skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ishraq, Naveed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents a novel all-inclusive power electronic converter noise model comprised of both differential-mode (DM) and common-mode (CM) parasitic circuit components. Furthermore, a thorough modeling method and novel experiment-driven methodology to analyze the impact of the DM and CM circuit components on the resultant conducted emission electromagnetic interference in a single-phase power factor correction boost converter rated for 1 kW 120 VAC/400 VDC utilizing silicon-carbide MOSFETs is presented. This is achieved by predicting DM and CM noise corner frequencies and observing DM/CM noise corner frequencies in a novel half-bridge noise cell-based, all-inclusive converter parasitic circuit model. Frequency spectrum results find that eight DM noise corner frequencies are estimated by the proposed all-inclusive noise model with low average error of 6.45%, and the model further successfully identifies lumped CM capacitances present in the power converter system. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. In this article, a high-efficiency and high-density 2.5 kW four-level interleaved flying capacitor multilevel (FCML) totem-pole bridgeless power-factor-correction (PFC) rectifier with 200 V GaN devices is analyzed, designed, and tested. This 2.5 kW four-level continuous conduction mode (CCM) GaN totem pole PFC operates with three times inductor current ripple frequency than that of the switching frequency which significantly reduces the size of the inductors while also supporting switching loss reduction. This article compares the loss of the two-level CCM GaN totem-pole PFC, four-level non-interleaved FCML PFC and interleaved four-level FCML PFC with the same ripple frequency (300 kHz) and shows that the interleaved four-level CCM GaN PFC has much less device loss. In addition, this article discusses the detailed EMI spectrum analysis and derivation of the mathematical model for determining the attenuation requirement of the four-level interleaved FCML PFC converter followed by volumetric co-optimization of AC-side passives i.e., the boost inductor and differential mode (DM) EMI filter. A 2.5 kW four-level interleaved FCML GaN totem-pole PFC prototype with an optimized 94 kHz switching frequency is developed and tested in this article. The converter exhibits a peak efficiency of 99.14% with system power density reaching 89.47 W/inch3. 
    more » « less